sklearn
条评论- 评估函数
-
1
2
3
4
5
6from sklearn import metrics
metrics.roc_auc_score(y_true,y_pre)
# F1 = 2 * (precision * recall) / (precision + recall)
metrics.f1_score(y_true,y_pre) Regression metrics
1
2metrics.mean_absolute_error(y_true,y_pre)
metrics.mean_squared_error(y_true,y_pre)
- 标准化和归一化
1
2
3
4
5
6
7
8
9
10
11
12from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
# 标准化
ss = StandardScaler()
std_data = ss.fit_transform(data)
origin_data = ss.inverse_transform(std_data) # 还原
# 归一化
mm = MinMaxScaler()
mm_data = mm.fit_transform(data)
origin_data = mm.inverse_transform(mm_data)